MAN6905 Datasets for Analysis
• Inventory details
• Customer details
• Sales order details
• Supplier Details
• Purchase order details
So consider what stock control is needed when a customer raises a sales order or an inventory manager within the organisation raises a purchase order.You need to identify the tables you require and the information that they are to contain. It is recommended that sale and purchase orders have header and line details tables.This is only a small system, do not over-complicate it.
• Set of normalised tables - with your sample data.
• Indicate the table relationships using multiple keys; PK, FK, and SK using UML notation.
Procedure:
1) Write all the SQL statements, necessary to create all tables and relationships, with Primary & Foreign keys.
2) Execute each statement in the correct order so as to create the relational database in MYSQL
3) Insert some data into each table
4) Use all your SQL create and Insert statements (from MS Word) to execute in the MYSQL WorkBench
5) Write in MS Word and execute in MYSQL WorkBench the statements necessary to;
i. display all tables,
ii. identify stock levels for items
iii. identify customer total expenditure
• No buttons are necessary, just what ACCESS generates to scroll forward, add a record etc.
• Make it clear what the forms do in the Form by adding text or headers.
• Note: If you don’t own MS-ACCESS, do this part of the assignment in the lab.
Answer:
This assignment is related to the stock system and some datasets for analysis. In the part 1 I implement the database in mysql workbench to create the table, insert the data into tables and perform some queries to check the dataflow is working well or not. Then I connect the mysql database with the access database and create purchase form for customer and sale form for supplier. A user not knows how to insert data into the database by using insert statements. So that by using these form user easily enter the data into the database. In part 2 I pick the dataset from given link and analysis the data by using pivot tables and pivot charts.
Part-1
Customer_Name |
Address |
Phone |
Item |
Pur_Quanity |
Purchase_Unit_Cost |
Pur_Order_Date |
Supplier_Name< /strong> |
Address |
Phone |
Sales_Qunatity |
Sales_unit_Cost |
Sale_Order_Date |
Quantity |
Inventory_Cost |
Reena |
US |
0987654321 |
Chair |
6 |
789 |
01-sep-2017 |
jack |
US |
77865875678 |
67 |
500 |
01-feb-2016 |
90 |
600 |
Meena |
US |
1234567890 |
Table |
6 |
1000 |
02-sep-2017 |
bina |
US |
6789098098 |
70 |
600 |
01-feb-2016 |
77 |
700 |
Rekha |
US |
5676567657 |
stand |
3 |
999 |
03-sep-2018 |
caaniya |
US |
5678767876 |
15 |
500 |
02-fan-2016 |
20 |
650 |
mikka |
US |
0989098789 |
Men pent |
2 |
1200 |
04-sep-2018 |
miya |
US |
0989098778 |
10 |
600 |
03-feb-2016 |
15 |
700 |
- |
- |
- |
Bed sheet |
|
|
|
robin |
US |
0989080980 |
50 |
300 |
04-feb-2016 |
90 |
400 |
First normal form (1NF): -
- Inventory_Sales_Purchase_Order: -
Inventory_ID(PK) |
Item_Name |
Quantity |
UnitCost |
Purchase_No |
Pur_Qunity |
Pur_UnitCost |
Pur_Order_Date |
Sale_No |
Sale_Qunity |
Sale_UnitCost |
Sale_Order_Date |
IN101 |
Chair |
90 |
600 |
P001 |
6 |
789 |
01-SEP-2017 |
S001 |
67 |
500 |
01-feb-2016 |
IN102 |
Table |
77 |
700 |
P002 |
6 |
1000 |
02-SEP-2017 |
S002 |
70 |
600 |
01-feb-2016 |
IN103 |
Stand |
20 |
650 |
P003 |
3 |
999 |
03-SEP-2017 |
S003 |
15 |
500 |
02-feb-2016 |
IN104 |
Men Pent |
15 |
700 |
P004 |
2 |
1200 |
04-SEP-2017 |
S004 |
10 |
600 |
03-feb-2016 |
IN105 |
Bed Sheet |
90 |
400 |
- |
- |
- |
|
S005 |
50 |
300 |
04-feb-2016 |
Customer_Purchase_Order
Purchase_No(PK) |
Customer_ID |
Name |
Address |
Phone |
P001 |
1 |
Reena |
US |
0987654321 |
P002 |
2 |
Meena |
US |
1234567890 |
P003 |
3 |
Rekha |
US |
5676567657 |
P004 |
4 |
mikka |
US |
0989098789 |
Sales_No(PK) |
Supplier_ID |
Name |
Address |
Phone |
S101 |
S001 |
Jack |
US |
77865875678 |
S102 |
S002 |
Bina |
US |
6789098098 |
S103 |
S003 |
caaniya |
US |
5678767876 |
S104 |
S004 |
miya |
US |
0989098778 |
S105 |
S005 |
Robin |
US |
0989080980 |
Second Normal Form (2NF): -
- Inventory: -
Inventory_ID(PK) |
Item_Name |
Quantity |
UnitCost |
IN101 |
Chair |
90 |
600 |
IN102 |
Table |
77 |
700 |
IN103 |
Stand |
20 |
650 |
IN104 |
Men Pent |
15 |
700 |
IN105 |
Bed Sheet |
90 |
400 |
Inventory _Purchase_Order: -
Inventory_ID(FK) |
Purchase_No |
Quantity |
Per_UnitCost |
Order_Date |
IN101 |
P001 |
6 |
789 |
01-SEP-2017 |
IN102 |
P002 |
6 |
1000 |
02-SEP-2017 |
IN103 |
P003 |
3 |
999 |
03-SEP-2017 |
IN104 |
P004 |
2 |
1200 |
04-SEP-2017 |
Inventory_Sales_Order: -
Inventory_ID(FK) |
Sale_No |
Quantity |
Per_UnitCost |
Order_Date |
IN101 |
SL001 |
67 |
500 |
01-feb-2016 |
IN102 |
SL002 |
70 |
600 |
01-feb-2016 |
IN103 |
SL003 |
15 |
500 |
02-feb-2016 |
IN104 |
SL004 |
10 |
600 |
03-feb-2016 |
IN105 |
SL005 |
50 |
300 |
04-feb-2016 |
Customer_Purchase_Order
Purchase_No(PK) |
Customer_ID |
Name |
Address |
Phone |
P001 |
1 |
Reena |
US |
0987654321 |
P002 |
2 |
Meena |
US |
1234567890 |
P003 |
3 |
Rekha |
US |
5676567657 |
P004 |
4 |
mikka |
US |
0989098789 |
Sales_No(PK) |
Supplier_ID |
Name |
Address |
Phone |
SL101 |
S001 |
Jack |
US |
77865875678 |
SL102 |
S002 |
Bina |
US |
6789098098 |
SL103 |
S003 |
caaniya |
US |
5678767876 |
SL104 |
S004 |
miya |
US |
0989098778 |
SL105 |
S005 |
Robin |
US |
0989080980 |
Third Normal Form: -
- Inventory: -
Inventory_ID(PK) |
Item_Name |
Quantity |
Per_UnitCost |
IN101 |
Chair |
90 |
600 |
IN102 |
Table |
77 |
700 |
IN103 |
Stand |
20 |
650 |
IN104 |
Men Pent |
15 |
700 |
IN105 |
Bed Sheet |
90 |
400 |
Customer
Customer_ID (PK) |
Name |
Address |
Phone |
1 |
Reena |
US |
0987654321 |
2 |
Meena |
US |
1234567890 |
3 |
Rekha |
US |
5676567657 |
4 |
mikka |
US |
0989098789 |
Supplier_ID (PK) |
Name |
Address |
Phone |
S001 |
Jack |
US |
77865875678 |
S002 |
Bina |
US |
6789098098 |
S003 |
caaniya |
US |
5678767876 |
S004 |
miya |
US |
0989098778 |
S005 |
Robin |
US |
0989080980 |
Purchase_Order: -
Purchase_No(FK) |
Inventory_ID(FK) |
Customer_ID (FK) |
Quantity |
Per_UnitCost |
Order_Date |
P001 |
IN101 |
1 |
6 |
789 |
01-SEP-2017 |
P002 |
IN102 |
2 |
6 |
1000 |
02-SEP-2017 |
P003 |
IN103 |
3 |
3 |
999 |
03-SEP-2017 |
P004 |
IN104 |
4 |
2 |
1200 |
04-SEP-2017 |
Sales_Order: -
Sales_No(PK) |
Inventory_ID(FK) |
Supplier_ID(FK) |
Quantity |
Per_UnitCost |
Order_Date |
SL101 |
IN101 |
S001 |
67 |
500 |
01-feb-2016 |
SL102 |
IN102 |
S002 |
70 |
600 |
01-feb-2016 |
SL103 |
IN103 |
S003 |
15 |
500 |
02-feb-2016 |
SL104 |
IN104 |
S004 |
10 |
600 |
03-feb-2016 |
SL105 |
IN105 |
S005 |
50 |
300 |
04-feb-2016 |
SQL: - Create tables: -
/*------------------1. inventory tables--------------------------*/
create table Inventory
Inventory_ID varchar(6) Primary key,
Item_Name varchar(50) not null,
Quantity int not null,
Per_UnitCost Decimal(10,2) not null
/*------------------2. Customer tables--------------------------*/
create table Customer
Customer_ID int auto_increment Primary key,
Name varchar(50) not null,
Address varchar(200) not null,
Phone varchar(12) not null
/*------------------3. Supplier tables--------------------------*/
create table Supplier
Supplier_ID varchar(6) primary key,
Name varchar(50) not null,
Address varchar(200) not null,
Phone Varchar(12) not null
/*------------------4. Purchase_Order tables--------------------------*/
create table Purchase_Order(
Purchase_No varchar(6) primary key,
Inventory_ID varchar(6) not null,
Customer_ID int not null,
Quantity int not null,
Per_UnitCost Decimal(10,2) not null,
Order_Date date not null,
Foreign key (Inventory_ID) references Inventory(Inventory_ID),
Foreign key (Customer_ID) references Customer(Customer_ID)
/*------------------5. Sales_Order tables--------------------------*/
create table Sales_Order
Sale_No varchar(10) primary key,
Inventory_ID varchar(10) not null,
Supplier_ID varchar(10) not null,
Quantity int not null,
Per_UnitCost Decimal(6,2) not null,
Order_Date date not null,
foreign key (Inventory_ID) references Inventory(Inventory_ID),
foreign key (Supplier_ID) references Supplier(Supplier_ID)
Insert data into tables: -
/*--------------------1. inventory tables--------------------------*/
insert into Inventory values
('IN101','Chair',90,600),
('IN102','Table',77,700),
('IN103','Stand',20,650),
('IN104','Men Pent',15,700),
('IN105','Bed Sheet',90,400);
/*--------------------2. Customer Table-----------------------*/
insert into Customer(Name, Address, Phone) values
('Reena','US','0987654321'),
('Meena','US','1234567890'),
('Rekha','US','5676567657'),
('mikka','US','0989098789');
/*------------------3. Supplier Table -------------------*/
insert into Supplier values
('S001','Jack','US','77865875678'),
('S002','Bina','US','6789098098'),
('S003','caaniya','US','5678767876'),
('S004','miya','US','0989098778'),
('S005','Robin','US','0989080980');
/*-------------------4. Purchase_Order tables--------------------------*/
insert into Purchase_Order values
('P001','IN101',1,6,789,'2017-09-01'),
('P002','IN102',2,6,1000,'2017-09-02'),
('P003','IN103',3,3,999,'2017-09-03'),
('P004','IN104',4,2,1200,'2017-09-04');
/*------------------5. Sales_Order tables--------------------------*/
insert into Sales_Order values
('SL101','IN101','S001',67,500,'2016-02-01'),
('SL102','IN102','S002',70,600,'2016-02-01'),
('SL103','IN103','S003',15,500,'2016-02-01'),
('SL104','IN104','S004',10,600,'2016-02-01'),
('SL105','IN105','S005',50,300,'2016-02-01');
Queries: -
- display all tables,: -
Table name |
Screenshot |
Inventory |
Select *from Inventory;
|
Customer |
select *from Customer;
|
Supplier |
Select *from Supplier;
|
Purchase |
Select *from Purchase_Order;
|
Sales |
Select *from Sales_Order;
|
Identify stock levels for items
select Item_Name, Quantity as 'Quantity',
concat('$',Per_UnitCost) as 'Per unit cost',
Concat('$',Quantity*Per_UnitCost) as 'Total_Cost'
from Inventory;
- Identify customer total expenditure
Select Customer.Name as 'Customer Name', Customer.Address as 'Address',
Customer.Phone as 'Phone', Inventory.Item_Name,
Purchase_Order.Quantity as 'Total Unit',
Concat('$',Purchase_Order.Per_UnitCost) as 'unit Cost',
Concat('$',Purchase_Order.Quantity* Purchase_Order.Per_UnitCost) as 'Total Cost'
from Customer, Inventory, Purchase_Order
where Customer.Customer_ID =Purchase_Order.Customer_ID
and Inventory.Inventory_ID=Purchase_Order.Inventory_ID;
b. A description of the dataset: -
This dataset is related to Taxation statistics 2014–15: Number of companies and total income, by industry code2. The information of this dataset is related to industry code, business description, number of companies, total income number, total income etc. this is large data set and select some dataset.
c. A screen captures showing the first page of the Excel spreadsheet containing the dataset.
2. Screen captures of ONE pivot table analysis on the dataset utilized together with ONE chart output that you have created.
A clear written analysis of the pivot table and chart: -
In pivot table contains the industry code and total income in each industry. Here in pivot chart we see that the total income in each industry and each industry represent by industry code. In this chart we analysis that industry code 01310 have maximum income and industry code 01150 have minimum income in 2014-15.
2. Dataset 2 detail: -
a. The URL of the dataset.
b. A description of the dataset: -
This dataset is related to the Taxation statistics 2011–12 Individual tax: Selected items, by age, residency status, gender and tax assessment ranges, and 2011–12 income years. This dataset contains information related to the age rang, gender, tax assessment rang, gross tax complementary tax etc.
c. A screen captures showing the first page of the Excel spreadsheet containing the dataset.
2. Screen captures of ONE pivot table analysis on the dataset utilized together with ONE chart output that you have created.
3. A clear written analysis of the pivot table and chart.
The Pivot table store information related to the Age range and Medicare levy. So that in pivot chart we represent the total Medicare levy in each age group. In this chart we analysis that age group 40-44 have maximum Medicare levy and age group 70-74 have minimum Medicare levy.
References
Carlberg, C. (2011). Statistical analysis. Indianapolis, IN: Que.
Cronan, J. (2010). Microsoft Office Access 2010. New York: McGraw-Hill.
DuBois, P. (2013). MySQL. Upper Saddle River, NJ: Addison-Wesley.
DuBois, P., & Go?mez Pastor, J. (2005). MySQL. Madrid: Anaya Multimedia.
Friedrichsen, L. (2011). Microsoft Access 2010 illustrated. Australia: Course Technology/Cengage Learning.
Frye, C. (2010). Microsoft Access 2010 plain & simple. Sebastopol, Calif.: O'Reilly Media.
Kofler, M., & Kramer, D. (2001). MySQL. Berkeley: Apress.
O'Leary, T., & O'Leary, L. (2011). Microsoft Access 2010. New York, NY: McGraw-Hill.
Pachev, S. (2012). MySQL. Helion.
Parsons, J. (2011). New perspectives on Microsoft Excel 2010. Boston, MA: Course Technology.
Schneller, D. (2010). MySQL Admin Cookbook. Birmingham: Packt Pub.
Schwartz, B., Zaitsev, P., Tkachenko, V., & Zawodny, J. (2012). High performance MySQL. Sebastopol, CA: O'Reilly Media.
Syrstad, T., & Jelen, B. (2011). Using Microsoft Excel 2010. Indianapolis, Ind.: Que.
Tahaghoghi, S., & Williams, H. (2007). Learning MySQL. Sebastopol, Calif.: O'Reilly.
Ullman, L. (2006). MySQL. Berkeley, CA: Peachpit.
Walkenbach, J. (2010). Excel 2010 power programming with VBA. Hoboken, N.J.: Wiley Pub.Buy MAN6905 Datasets for Analysis Answers Online
Talk to our expert to get the help with MAN6905 Datasets for Analysis Answers to complete your assessment on time and boost your grades now
The main aim/motive of the management assignment help services is to get connect with a greater number of students, and effectively help, and support them in getting completing their assignments the students also get find this a wonderful opportunity where they could effectively learn more about their topics, as the experts also have the best team members with them in which all the members effectively support each other to get complete their diploma assignments. They complete the assessments of the students in an appropriate manner and deliver them back to the students before the due date of the assignment so that the students could timely submit this, and can score higher marks. The experts of the assignment help services at urgenthomework.com are so much skilled, capable, talented, and experienced in their field of programming homework help writing assignments, so, for this, they can effectively write the best economics assignment help services.